Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATSA__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATSA__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATSA__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATSA__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → A__TL(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
A__NATSA__ADX(a__zeros)
MARK(zeros) → A__ZEROS
MARK(hd(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(nats) → A__NATS
A__NATSA__ZEROS
MARK(incr(X)) → MARK(X)
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
tl(x1)  =  tl(x1)
A__TL(x1)  =  A__TL(x1)
mark(x1)  =  mark(x1)
hd(x1)  =  hd(x1)
A__HD(x1)  =  A__HD(x1)
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  incr(x1)
adx(x1)  =  adx(x1)
a__adx(x1)  =  a__adx(x1)
a__incr(x1)  =  a__incr(x1)
nats  =  nats
a__nats  =  a__nats
a__tl(x1)  =  a__tl(x1)
0  =  0
a__zeros  =  a__zeros
a__hd(x1)  =  a__hd(x1)
s(x1)  =  x1
zeros  =  zeros

Lexicographic path order with status [19].
Quasi-Precedence:
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > aadx1 > aincr1 > cons2 > incr1
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > aadx1 > aincr1 > cons2 > adx1
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > azeros > cons2 > incr1
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > azeros > cons2 > adx1
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > azeros > 0
[MARK1, tl1, ATL1, mark1, hd1, AHD1, nats, anats, atl1, ahd1] > azeros > zeros

Status:
mark1: [1]
zeros: multiset
hd1: [1]
azeros: multiset
MARK1: [1]
AHD1: [1]
anats: multiset
0: multiset
adx1: [1]
cons2: [1,2]
ahd1: [1]
aadx1: [1]
incr1: [1]
ATL1: [1]
nats: multiset
tl1: [1]
aincr1: [1]
atl1: [1]


The following usable rules [14] were oriented:

a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
mark(nats) → a__nats
a__tl(X) → tl(X)
mark(0) → 0
a__natsa__adx(a__zeros)
a__hd(X) → hd(X)
mark(incr(X)) → a__incr(mark(X))
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
mark(s(X)) → s(X)
mark(hd(X)) → a__hd(mark(X))
a__hd(cons(X, Y)) → mark(X)
mark(tl(X)) → a__tl(mark(X))
a__tl(cons(X, Y)) → mark(Y)
a__incr(X) → incr(X)
a__zeroscons(0, zeros)
mark(zeros) → a__zeros
a__natsnats
a__zeroszeros
mark(adx(X)) → a__adx(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
a__adx(X) → adx(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → A__TL(mark(X))

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 2 less nodes.